skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yuejing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The group III–V semiconductor photonic system is attractive to photonics engineers because it provides a complete set of photonic components. A plasmonic material that can be epitaxially integrated with the group III–V photonic system will potentially lead to many applications leveraging plasmonics and metamaterials. In this work, the shortest plasma wavelength ever reported in a III–V‐based material is demonstrated by epitaxially embedding ErAs into GaAs. This composite material acts as a tunable plasmonic material across the technologically important 2.68–6 µm infrared window. The growth window of this material is demonstrated to be much wider than other current heavily doped III–V plasmonic materials. Additionally, it is shown that the scattering rate can be reduced by increasing the growth temperature. The wide growth temperature range, designer plasmonic response, and the ease of epitaxial integration with other III–V semiconductor devices demonstrate the potential of ErAs:GaAs nanocomposites for the creation of a new type of metamaterial and other novel optoelectronic and nanophotonic applications. 
    more » « less